Using a grid computing-based meta-evolutionary mining approach for the microarray data cancer-categorization

Author:

Chiang Tai-Wei,Chen Ta-Cheng

Abstract

Purpose The categorization response model through gene expression patterns turns into one of the most favorable utilizations of the microarray technology. In this study, the aim is to propose a grid computing-based meta-evolutionary mining approach as a categorization response model for gene selection and cancer classification. Design/methodology/approach The proposed approach is based on the grid computing infrastructure for establishing the best attributes set selected from a big microarray data. The novel discriminant analysis is based on vector distant of median method as the evaluation function of meta-evolutionary mining approach. In this study, the proposed approach lays stress on finding the best attributes set for constructing a categorization response model with highest categorization accuracy. Findings Examples for several benchmarking cancer microarray data sets were used to evaluate the proposed approach, whose results are also compared with other approaches in literatures. Experimental results from four benchmarking problems indicate that the proposed approach works effectively and efficiently, and the results of the proposed methods are superior to or as well as other existing methods in literatures. Originality/value The novel discriminant analysis is based on vector distant of median method as the evaluation function of meta-evolutionary mining approach to discover the best feature subset automatically from the microarray tumor database. In this study, the proposed approach lays stress on finding the best attributes set for constructing a categorization response model with highest categorization accuracy.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference30 articles.

1. An epicurean learning approach to gene-expression data classification;Artificial Intelligence in Medicine,2003

2. Algorithms for phylogenetic footprinting,2001

3. Using a hybrid meta-evolutionary rule mining approach as classification response model;Expert Systems with Applications,2009

4. A novel ensemble of classifiers for microarray data classification;Applied Soft Computing,2008

5. DNA arrays for analysis of gene expression;Methods in Enzymology,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3