Uncertainty quantification/propagation in nonlinear models

Author:

Chikhaoui Khaoula,Bouhaddi Noureddine,Kacem Najib,Guedri Mohamed,Soula Mohamed

Abstract

Purpose The purpose of this paper is to develop robust metamodels, which allow propagating parametric uncertainties, in the presence of localized nonlinearities, with reduced cost and without significant loss of accuracy. Design/methodology/approach The proposed metamodels combine the generalized polynomial chaos expansion (gPCE) for the uncertainty propagation and reduced order models (ROMs). Based on the computation of deterministic responses, the gPCE requires prohibitive computational time for large-size finite element models, large number of uncertain parameters and presence of nonlinearities. To overcome this issue, a first metamodel is created by combining the gPCE and a ROM based on the enrichment of the truncated Ritz basis using static residuals taking into account the stochastic and nonlinear effects. The extension to the Craig–Bampton approach leads to a second metamodel. Findings Implementing the metamodels to approximate the time responses of a frame and a coupled micro-beams structure containing localized nonlinearities and stochastic parameters permits to significantly reduce computation cost with acceptable loss of accuracy, with respect to the reference Latin Hypercube Sampling method. Originality/value The proposed combination of the gPCE and the ROMs leads to a computationally efficient and accurate tool for robust design in the presence of parametric uncertainties and localized nonlinearities.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference66 articles.

1. Structural optimization under uncertainties considering reduced-order modeling,2013

2. Parametric families of reduced finite element models: theory and applications;Mechanical Systems and Signal Processing,1996

3. Optimal Ritz vectors for component mode synthesis using the singular value decomposition;AIAA Journal,1996

4. Dynamics of random coupled structures through the wave finite element method;Engineering Computations: International Journal for Computer-Aided Engineering and Software,2015

5. Stochastic finite element: a non-intrusive approach by regression;European Journal of Computational Mechanics,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3