A computational investigation for propagation of elasto-viscoplastic zones in the shock loaded circular plates

Author:

Zajkani Asghar,Darvizeh Abolfazl,Darvizeh Mansour

Abstract

Purpose – The purpose of this paper is to introduce a computational time dependent modeling to investigate propagation of elastic-viscoplastic zones in the shock wave loaded circular plates. Design/methodology/approach – Constitutive equations are implemented incrementally by the Von-Kármán finite deflection system which is coupled with a mixed strain hardening rule and physical-base viscoplastic models. Time integrations of the equations are done by the return mapping technique through the cutting-plane algorithm. An integrated solution is established by pseudo-spectral collocation methodology. The Chebyshev basis functions are utilized to evaluate the coefficients of displacement fields. Temporal terms are discretized by the Houbolt marching method. Spatial linearizations are accomplished by the quadratic extrapolation technique. Findings – Results of the center point deflections, effective plastic strain and stress (dynamic flow stress) and temperature rise are compared for three features of the Von-Kármán system. Identifying time history of resultant stresses, propagations of the viscoplastic plastic zones are illustrated for two circumstances; with considering strain rate and hardening effects, and without them. Some of modeling and computation aspects are discussed, carefully. When the results are compared with experimental data of shock wave loadings and finite element simulations, good agreements between them are observed. Originality/value – This computational approach makes coupling the structural equations with the physical descriptions of the high rate deformation through step-by-step spectral solution of the constitutive equations.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3