Parallel algorithms for moving boundary problems by local remeshing

Author:

He Lisha,Zheng Jianjing,Zheng Yao,Chen Jianjun,Zhou Xuan,Xiao Zhoufang

Abstract

Purpose The purpose of this paper is to develop parallel algorithms for moving boundary simulations by local remeshing and compose them to a fully parallel simulation cycle for the solution of problems with engineering interests. Design/methodology/approach The moving boundary problems are solved by unsteady flow computations coupled with six-degrees-of-freedom equations of rigid body motion. Parallel algorithms are developed for both computational fluid dynamics (CFD) solution and grid deformation steps. Meanwhile, a novel approach is developed for the parallelization of the local remeshing step. It inputs a distributed mesh after deformation, then marks low-quality elements to be deleted on the respective processors. After that, a parallel domain decomposition approach is used to repartition the hole mesh and then to redistribute the resulting sub-meshes onto all available processors. Then remesh individual sub-holes in parallel. Finally, the element redistribution is rebalanced. Findings If the CFD solver is parallelized while the remaining steps are executed in sequential, the performance bottleneck of such a simulation cycle is observed when the simulation of large-scale problem is executed. The developed parallel simulation cycle, in which all of time-consuming steps have been efficiently parallelized, could overcome these bottlenecks, in terms of both memory consumption and computing efficiency. Originality/value A fully parallel approach for moving boundary simulations by local remeshing is developed to solve large-scale problems. In the algorithm level, a novel parallel local remeshing algorithm is present. It repartitions distributed hole elements evenly onto all available processors and ensures the generation of a well-shaped inter-hole boundary always. Therefore, the subsequent remeshing step can fix the inter-hole boundary involves no communications.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference56 articles.

1. Adaptive modification for time evolving meshes;Journal of Materials Science,2003

2. Drag reduction in fish-like locomotion;Journal of Fluid Mechanics,1999

3. Recent enhancements to the FUN3D flow solver for Moving-Mesh applications,2009

4. Considerations on the spring analogy;International Journal for Numerical Methods in Fluids,2000

5. A triangular finite element with local remeshing for the large strain analysis of axisymmetric solids;Computer Methods in Applied Mechanics and Engineering,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic mesh analysis by numerical simulation of internal combustion engines;REM - International Engineering Journal;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3