Abstract
PurposeDeep learning (DL) technologies assist manufacturers to manage their business operations. This research aims to present state-of-the-art insights on the trends and ways forward for DL applications in manufacturing operations.Design/methodology/approachUsing bibliometric analysis and the SPAR-4-SLR protocol, this research conducts a systematic literature review to present a scientific mapping of top-tier research on DL applications in manufacturing operations.FindingsThis research discovers and delivers key insights on six knowledge clusters pertaining to DL applications in manufacturing operations: automated system modelling, intelligent fault diagnosis, forecasting, sustainable manufacturing, environmental management, and intelligent scheduling.Research limitations/implicationsThis research establishes the important roles of DL in manufacturing operations. However, these insights were derived from top-tier journals only. Therefore, this research does not discount the possibility of the availability of additional insights in alternative outlets, such as conference proceedings, where teasers into emerging and developing concepts may be published.Originality/valueThis research contributes seminal insights into DL applications in manufacturing operations. In this regard, this research is valuable to readers (academic scholars and industry practitioners) interested to gain an understanding of the important roles of DL in manufacturing operations as well as the future of its applications for Industry 4.0, such as Maintenance 4.0, Quality 4.0, Logistics 4.0, Manufacturing 4.0, Sustainability 4.0, and Supply Chain 4.0.
Subject
Information Systems,Management of Technology and Innovation,General Decision Sciences
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献