Artificial neural network and regression models for prediction of sewing thread consumption for multilayered fabric assembly at lockstitch 301 seam

Author:

Chavhan Md Vaseem,Naidu M. Ramesh,Jamakhandi Hayavadana

Abstract

Purpose This paper aims to propose the artificial neural network (ANN) and regression models for the estimation of the thread consumption at multilayered seam assembly stitched with lock stitch 301. Design/methodology/approach In the present study, the generalized regression and neural network models are developed by considering the fabric types: woven, nonwoven and multilayer combination thereof, with basic sewing parameters: sewing thread linear density, stitch density, needle count and fabric assembly thickness. The network with feed-forward backpropagation is considered to build the ANN, and the training function trainlm of MATLAB software is used to adjust weight and basic values according to the optimization of Levenberg Marquardt. The performance of networks measured in terms of the mean squared error and the layer output is set according to the sigmoid transfer function. Findings The proposed ANN and regression model are able to predict the thread consumption with more accuracy for multilayered seam assembly. The predictability of thread consumption from available geometrical models, regression models and industrial empirical techniques are compared with proposed linear regression, quadratic regression and neural network models. The proposed quadratic regression model showed a good correlation with practical thread consumption value and more accuracy in prediction with an overall 4.3% error, as compared to other techniques for given multilayer substrates. Further, the developed ANN network showed good accuracy in the prediction of thread consumption. Originality/value The estimation of thread consumed while stitching is the prerequisite of the garment industry for inventory management especially with the introduction of the costly high-performance sewing thread. In practice, different types of fabrics are stitched at multilayer combinations at different locations of the stitched product. The ANN and regression models are developed for multilayered seam assembly of woven and nonwoven fabric blend composition for better prediction of thread consumption.

Publisher

Emerald

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

Reference28 articles.

1. Regression model to predict thread consumption incorporating thread-tension constraint: study on lock-stitch 301 and chain-stitch 401;Fashion and Textiles,2014

2. Further studies on balance and thread consumptions of lockstitch seams;International Journal of Clothing Science and Technology,1993

3. Consumed sewing thread behaviour based on lockstitch and chainstitch;Indian Journal of Fibre and Textile Research,2017

4. An innovative device for bobbin thread consumption measurement on industrial lockstitch sewing machines;International Conference on Industrial Technology,2004

5. An elliptical model for lockstitch 301 seam to estimate thread consumption;The Journal of the Textile Institute,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3