Measurement and sonification of construction site noise and particle pollution data

Author:

Rönnberg NiklasORCID,Ringdahl Rasmus,Fredriksson Anna

Abstract

PurposeThe noise and dust particles caused by the construction transport are by most stakeholders experienced as disturbing. The purpose of this study is to explore how sonification can support visualization in construction planning to decrease construction transport disturbances.Design/methodology/approachThis paper presents an interdisciplinary research project, combining research on construction logistics, internet of things and sonification. First, a data recording device, including sound, particle, temperature and humidity sensors, was implemented and deployed in a development project. Second, the collected data were used in a sonification design, which was, third, evaluated with potential users.FindingsThe results showed that the low-cost sensors used could capture “good enough” data, and that the use of sonification for representing these data is interesting and a possible useful tool in urban and construction transport planning.Research limitations/implicationsThere is a need to further evolve the sonification design and better communicate the aim of the sounds used to potential users. Further testing is also needed.Practical implicationsThis study introduces new ideas of how to support visualization with sonification planning the construction work and its impact on the vicinity of the site. Currently, urban planning and construction planning focus on visualizing the final result, with little focus on how to handle disturbances during the construction process.Originality/valueShowing the potentials of using low-cost sensor data in sonification, and using sonification together with visualization, is the result of a novel interdisciplinary research area combination.

Publisher

Emerald

Subject

Management, Monitoring, Policy and Law,Urban Studies,Building and Construction,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering,Human Factors and Ergonomics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3