Investigation on dynamic mathematical model and control method of flue gas heat exchange system

Author:

Ma HongqiangORCID,Xie Yue,Song Xingpeng,Liu Yu,Luo Xinmei,Wang Shengxun

Abstract

PurposeThe purpose of this paper is to recover the waste heat of flue gas heat exchanger (FGHE) as efficiently as possible and avoid the acid dew corrosion of that.Design/methodology/approachA novel flue gas waste heat recovery system was proposed in the paper. The dynamic mathematical models of key equipment in that were established based on theory and experiment method. The proportion integration differentiation-differentiation (PID-P) cascade control method based on particle swarm optimization algorithm was used to control the outlet temperature of FGHE. The dynamic characteristics of the flue gas heat exchange system were simulated by the particle swarm optimization algorithm with different fitness functions.FindingsThe PID-P temperature controller parameters can be quickly and effectively obtained by the particle swarm optimization algorithm based on the fitness function of integral time absolute error (ITAE). The overshoot, rise time and adjusting time of the novel system are 2, 83 and 105s, respectively. Compared with the traditional two-step tuning (T-ST) method, the novel system is better in dynamic and steady-state performance. The overshoot and the adjustment time of the system are reduced by 44% and 328s, respectively. ITAE is a performance evaluation index for control system with good engineering practicability and selectivity.Originality/valueThe dynamic mathematical model of key equipment in the new flue gas waste heat recovery system is established and the system's control strategies and methods are explored.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference24 articles.

1. Optimisation of PID controller employing PSO algorithm for interleaved buck-boost power electronic converter;International Journal of Industrial Electronics and Drives,2019

2. A novel technical route based on wet flue gas desulfurization process for flue gas dehumidification, water and heat recovery;Applied Thermal Engineering,2020

3. Development of a direct contact heat exchanger for energy and water recovery from humid flue gas;Applied Thermal Engineering,2020

4. Dynamic analysis of plate heat exchangers with dispersion in both fluids;International Journal of Heat and Mass Transfer,1995

5. Performance comparison of PID tuning by using Ziegler-Nichols and particle swarm optimization approaches in a water control system;Journal of Information and Communication Technology,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3