Numerical algorithm of reinforced concrete lining cracking process for pressure tunnels

Author:

Zhang Wei,Dai Beibing,Liu Zhen,Zhou Cuiying

Abstract

Purpose The cracking of a reinforced concrete lining has a significant influence on the safety and leakage of pressure tunnels. This study aims to develop, validate and apply a numerical algorithm to simulate the lining cracking process during the water-filling period of pressure tunnels. Design/methodology/approach Cracks are preset in all lining elements, and the Mohr−Coulomb criterion with a tension cutoff is used in determining whether a preset crack becomes a real crack. The effects of several important factors such as the water pressure on crack surfaces (WPCS) and the heterogeneity of the lining tensile strength are also considered simultaneously. Findings The crack number and width increase gradually with the increase in internal water pressure. However, when the pressure reaches a threshold value, the increase in crack width becomes ambiguous. After the lining cracks, the lining displacement distribution is discontinuous and steel bar stress is not uniform. The measured stress of the steel bar is greatly determined by the position of the stress gauge. The WPCS has a significant influence on the lining cracking mechanism and should not be neglected. Originality/value A reliable algorithm for simulating the lining cracking process is presented by which the crack number and width can be determined directly. The numerical results provide an insight into the development law of lining cracks and show that the WPCS significantly affects the cracking mechanism.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference27 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3