Numerical solution of mixed convection in a lid-driven cavity with arc-shaped moving wall

Author:

Ismael Muneer A.

Abstract

Purpose This paper investigates a numerical treatment to steady mixed convection in a lid-driven square cavity with arc-shaped moving wall or lid. The horizontal walls are thermally insulated. The vertical left wall is kept isothermally at high temperature, while the right arc-shaped moving wall is kept isothermally at low temperature. Design/methodology/approach Finite difference method in Cartesian coordinates with the upwind scheme is used in numerical solution. The irregular curved boundary has been treated by invoking non-uniform mesh grid with the ability to generate boundary fitted nodes. Jensen’s formulas of Neumann’s boundary condition have derived for the non-uniform mesh grid. The arc-shaped moving wall is considered as a segment of a rotating cylinder; thus, the studied pertinent parameters are the rotational speed of the arc-shaped wall in both aiding and opposing directions ω = −1,000-1,000, the arc-wall radius Ro = 0.5099-1.534 which is governed by its center (X0, Y0) = (1.1, 0.5)-(2.45, 0.5) and the Rayleigh number Ra = 103 − 106. Findings The results have shown that for low Rayleigh numbers, the rotational speed enhances heat transfer irrespective to the direction of rotation, while for high Rayleigh numbers, the aiding anticlockwise rotation (negative ω) enhances the heat transfer, while the opposing clockwise rotation (positive ω) manifests a retardation effect on the heat transfer. For a motionless arc-wall, its radius is ineffective for aiding heat transfer, while for non-zero arc-shaped wall speed, the heat transfer is an increasing function of its radius. Originality/value The arc-shaped moving wall has never been investigated until now. Therefore, the originality of this paper is due to studying the mixed convection in a lid-driven cavity with moving arc-shaped wall and inspecting the effect of its curvature and rotational speed in both directions on the flow and thermal fields.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference35 articles.

1. Mixed convection flow of a nanofluid in a lid-driven cavity with a wavy wall;International Communication in Heat and Mass Transfer,2014

2. Numerical simulation of combined thermal and mass transport in a square lid-driven cavity;International Journal of Thermal Sciences,2007

3. Aiding and opposing mechanisms of mixed convection in a shear-and buoyancy-driven cavity;International Communications in Heat and Mass Transfer,1999

4. Mixed convection and role of multiple solutions in lid-driven trapezoidal enclosures;International Journal of Heat and Mass Transfer,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3