A weighted Fama-MacBeth two-step panel regression procedure: asymptotic properties, finite-sample adjustment, and performance

Author:

Lee Kyuseok

Abstract

Purpose In a recent paper, Yoon and Lee (2019) (YL hereafter) propose a weighted Fama and MacBeth (FMB hereafter) two-step panel regression procedure and provide evidence that their weighted FMB procedure produces more efficient coefficient estimators than the usual unweighted FMB procedure. The purpose of this study is to supplement and improve their weighted FMB procedure, as they provide neither asymptotic results (i.e. consistency and asymptotic distribution) nor evidence on how close their standard error estimator is to the true standard error. Design/methodology/approach First, asymptotic results for the weighted FMB coefficient estimator are provided. Second, a finite-sample-adjusted standard error estimator is provided. Finally, the performance of the adjusted standard error estimator compared to the true standard error is assessed. Findings It is found that the standard error estimator proposed by Yoon and Lee (2019) is asymptotically consistent, although the finite-sample-adjusted standard error estimator proposed in this study works better and helps to reduce bias. The findings of Yoon and Lee (2019) are confirmed even when the average R2 over time is very small with about 1% or 0.1%. Originality/value The findings of this study strongly suggest that the weighted FMB regression procedure, in particular the finite-sample-adjusted procedure proposed here, is a computationally simple but more powerful alternative to the usual unweighted FMB procedure. In addition, to the best of the authors’ knowledge, this is the first study that presents a formal proof of the asymptotic distribution for the FMB coefficient estimator.

Publisher

Emerald

Subject

General Economics, Econometrics and Finance

Reference24 articles.

1. Fama-Mac beth two-pass regressions: improving risk premia estimates;Finance Research Letters,2015

2. The Capital asset pricing model: some empirical findings,1972

3. Robust inference with multiway clustering;Journal of Business and Economic Statistics,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3