Practice challenge recommendations in online judge using implicit rating extraction and utility sequence patterns

Author:

P Natarajan RameshORCID,S Kannimuthu,D Bhanu

Abstract

PurposeThe existing traditional recommendations based on content-based filtering (CBF), collaborative filtering (CF) and hybrid approaches are inadequate for recommending practice challenges in programming online judge (POJ). These systems only consider the preferences of the target users or similar users to recommend items. In the learning environment, recommender systems should consider the learning path, knowledge level and ability of the learner. Another major problem in POJ is the learners don't give ratings to practice challenges like e-commerce and video streaming portals. This purpose of the proposed approach is to overcome the abovementioned shortcomings.Design/methodology/approachTo achieve the context-aware practice challenge recommendation, the data preparation techniques including implicit rating extraction, data preprocessing to remove outliers, sequence-based learner clustering and utility sequence pattern mining approaches are used in the proposed approach. The approach ensures that the recommender system considers the knowledge level, learning path and learning goals of the learner to recommend practice challenges.FindingsExperiments on practice challenge recommendations conducted using real-world POJ dataset show that the proposed system outperforms other traditional approaches. The experiment also demonstrates that the proposed system is recommending challenges based on the learner's current context. The implicit rating extracted using the proposed approach works accurately in the recommender system.Originality/valueThe proposed system contains the following novel approaches to address the lack of rating and context-aware recommendations. The mathematical model was used to extract ratings from learner submissions. The statistical approach was used in data preprocessing. The sequence similarity-based learner clustering was used in transition matrix. Utilizing the rating as a utility in the USPAN algorithm provides useful insights into learner–challenge relationships.

Publisher

Emerald

Reference37 articles.

1. Cascaded feature selection for enhancing the performance of collaborative recommender system;Advances in Electrical and Computer Engineering,2018

2. E-learning personalization based on dynamic learners' preference;International Journal of Computer Science and Information Technology,2011

3. Personalizing E-learning curriculum using: reversed roulette wheel selection algorithm,2014

4. An efficient personalized trust-based hybrid recommendation (TBHR) strategy for e-learning system in cloud computing;Cluster Computing,2019

5. Association rules mining method of big data for E-learning recommendation engine,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3