Author:
Sorrentino Assunta,Romano Fulvio,De Fenza Angelo
Abstract
Purpose
The purpose of this paper is to introduce a methodology aimed to detect debonding induced by low impacts energies in typical aeronautical structures. The methodology is based on high frequency sensors/actuators system simulation and the application of elliptical triangulation (ET) and probability ellipse (PE) methods as damage detector. Numerical and experimental results on small-scale stiffened panels made of carbon fiber-reinforced plastic material are discussed.
Design/methodology/approach
The damage detection methodology is based on high frequency sensors/actuators piezoceramics system enabling the ET and the PE methods. The approach is based on ultrasonic guided waves propagation measurement and simulation within the structure and perturbations induced by debonding or impact damage that affect the signal characteristics.
Findings
The work is focused on debonding detection via test and simulations and calculation of damage indexes (DIs). The ET and PE methodologies have demonstrated the link between the DIs and debonding enabling the identification of position and growth of the damage.
Originality/value
The debonding between two structural elements caused in manufacturing or in-service is very difficult to detect, especially when the components are in low accessibility areas. This criticality, together with the uncertainty of long-term adhesive performance and the inability to continuously assess the debonding condition, induces the aircrafts’ manufacturers to pursuit ultraconservative design approach, with in turn an increment in final weight of these parts. The aim of this research’s activity is to demonstrate the effectiveness of the proposed methodology and the robustness of the structural health monitoring system to detect debonding in a typical aeronautical structural joint.
Reference29 articles.
1. Electromechanical impedance modelling for adhesively bonded piezo-transducers;Journal of Intelligent Material Systems and Structures,2004
2. Structural health monitoring by piezo-impedance transducers. I: modelling;Journal of Aerospace Engineering,2004
3. Skin-spar failure detection of a composite winglet using FBG sensors;Archive of Mechanical Engineering,2017
4. Influence of source frequency on impact-echo data quality for testing concrete structures;NDT & E International,2002
5. Application of artificial neural networks and probability ellipse methods for damage detection using lamb waves;Composite Structures,2015