Detection and prevention of black-hole and wormhole attacks in wireless sensor network using optimized LSTM

Author:

Pawar Mohandas V.,J. Anuradha

Abstract

Purpose This study aims to present a novel system for detection and prevention of black hole and wormhole attacks in wireless sensor network (WSN) based on deep learning model. Here, different phases are included such as assigning the nodes, data collection, detecting black hole and wormhole attacks and preventing black hole and wormhole attacks by optimal path communication. Initially, a set of nodes is assumed for carrying out the communication in WSN. Further, the black hole attacks are detected by the Bait process, and wormhole attacks are detected by the round trip time (RTT) validation process. The data collection procedure is done with the Bait and RTT validation process with attribute information. The gathered data attributes are given for the training in which long short-term memory (LSTM) is used that includes the attack details. This is used for attack detection process. Once they are detected, those attacks are removed from the network using the optimal path selection process. Here, the optimal shortest path is determined by the improvement in the whale optimization algorithm (WOA) that is called as fitness rate-based whale optimization algorithm (FR-WOA). This shortest path communication is carried out based on the multi-objective function using energy, distance, delay and packet delivery ratio as constraints. Design/methodology/approach This paper implements a detection and prevention of attacks model based on FR-WOA algorithm for the prevention of attacks in the WSNs. With this, this paper aims to accomplish the desired optimization of multi-objective functions. Findings From the analysis, it is found that the accuracy of the optimized LSTM is better than conventional LSTM. The energy consumption of the proposed FR-WOA with 35 nodes is 7.14% superior to WOA and FireFly, 5.7% superior to grey wolf optimization and 10.3% superior to particle swarm optimization. Originality/value This paper develops the FR-WOA with optimized LSTM detecting and preventing black hole and wormhole attacks from WSN. To the best of the authors’ knowledge, this is the first work that uses FR-WOA with optimized LSTM detecting and preventing black hole and wormhole attacks from WSN.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference38 articles.

1. Detection of epilepsy seizures in neo-natal EEG using LSTM architecture;IEEE Access,2019

2. Detection and prevention of wormhole attack using the trust-based routing system,2020

3. Detection and prevention of wormhole attack in wireless sensor network using AOMDV protocol;Procedia Computer Science,2016

4. Secure co-operative neighbour-based approach for detection and prevention of black hole attack in wireless mobile ad-hoc networks;International Journal of Wireless and Mobile Computing,2020

5. Recent advances in attacks, technical challenges, vulnerabilities and their countermeasures in wireless sensor networks;Wireless Personal Communications,2018

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3