IoT based lung cancer detection using machine learning and cuckoo search optimization

Author:

Chapala Venkatesh,Bojja Polaiah

Abstract

Purpose Detecting cancer from the computed tomography (CT)images of lung nodules is very challenging for radiologists. Early detection of cancer helps to provide better treatment in advance and to enhance the recovery rate. Although a lot of research is being carried out to process clinical images, it still requires improvement to attain high reliability and accuracy. The main purpose of this paper is to achieve high accuracy in detecting and classifying the lung cancer and assisting the radiologists to detect cancer by using CT images. The CT images are collected from health-care centres and remote places through Internet of Things (IoT)-enabled platform and the image processing is carried out in the cloud servers. Design/methodology/approach IoT-based lung cancer detection is proposed to access the lung CT images from any remote place and to provide high accuracy in image processing. Here, the exact separation of lung nodule is performed by Otsu thresholding segmentation with the help of optimal characteristics and cuckoo search algorithm. The important features of the lung nodules are extracted by local binary pattern. From the extracted features, support vector machine (SVM) classifier is trained to recognize whether the lung nodule is malicious or non-malicious. Findings The proposed framework achieves 99.59% in accuracy, 99.31% in sensitivity and 71% in peak signal to noise ratio. The outcomes show that the proposed method has achieved high accuracy than other conventional methods in early detection of lung cancer. Practical implications The proposed algorithm is implemented and tested by using more than 500 images which are collected from public and private databases. The proposed research framework can be used to implement contextual diagnostic analysis. Originality/value The cancer nodules in CT images are precisely segmented by integrating the algorithms of cuckoo search and Otsu thresholding in order to classify malicious and non-malicious nodules.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference37 articles.

1. A novel approach for tumor segmentation for lung cancer using multi-objective genetic algorithm and connected component analysis,2019

2. Evolutionary hybrid particle swarm optimization algorithm to minimize makespan toschedule a flow shop with no wait;Journal of Engineering Science and Technology,2019

3. Detection of cancer in lung with K-NN classification using genetic algorithm;Procedia Materials Science,2015

4. Patient-specific models for lung nodule detection and surveillance in CT images;Proc. IEEE Trans. Med. Imag,2001

5. cancer.org (2020), available at: www.cancer.org/cancer/lung-cancer/about/key-statistics.html

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3