Accurate LBM appraising of pin-fins heat dissipation performance and entropy generation in enclosures as application to power electronic cooling

Author:

Djebali Ridha,Jaouabi Abdallah,Naffouti Taoufik,Abboudi Said

Abstract

Purpose The purpose of this paper is to carry out an in-depth analysis of heat dissipation performance by natural convection phenomenon inside light-emitting diode (LED) lamps containing hot pin-fins because of its significant industrial applications. Design/methodology/approach The problem is assimilated to heat transfer inside air-filled rectangular cavity with various governing parameters appraised in ranges interesting engineering application and scientific research. The lattice Boltzmann method is used to predict the dynamic and thermal behaviors. Effects of monitoring parameters such as Rayleigh number Ra (103-106), fin length (0-0.25) and its position, pin-fins number (1-8), the tilting-angle (0-180°) and cavity aspect ratio Ar (0.25-4) are carried out. Findings The rising behaviors of the dynamic and thermal structures and heat transfer rate (Nu), the heatlines distribution and the irreversibility rate are appraised. It was found that the flow is constantly two contra-rotating symmetric cells. The heat transfer is almost doubled by increasing Ra. A lack of cooling performance was identified between Ar = 0.5 and 0.75. The inclination 45° is the most appropriate cooling case. At constant Ra, the maximum stream-function and the global entropy generation remain almost unchanged by increasing the pin number from 1 to 8 and the entropy generation is of thermal origin for low Ra, so that the fluid friction irreversibility becomes dominant for Ra larger than 105. Research limitations/implications Improvements may include three-dimensional complex geometries, accounting for thermal radiation, high unit power and turbulence modelling. Such factors effects will be conducted in the future. Practical implications The cooling performance/heat dissipation in LED lamps is a key manufacturing factors, which determines the lifetime of the electronic components. The best design and installation give the opportunity to increase further the product shelf-life. Originality/value Both cooling performance, irreversibility rate and enclosure configuration (aspect ratio and inclination) are taken into account. This cooling scheme will give a superior operating mode of the hot components in an era where energy harvesting, storage and consumption is met with considerable attention in the worldwide.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference34 articles.

1. LBM simulation of free convection in a nanofluid filled incinerator containing a hot block;International Journal of Mechanical Sciences,2018

2. Nusselt-Rayleigh correlations for design of industrial elements: experimental and numerical investigation of natural convection in tilted square air filled enclosures;Energy Conversion and Management,2008

3. Heat transfer enhancement of circular and square LED geometry;International Journal of Numerical Methods for Heat and Fluid Flow,2018

4. Natural convection heat transfer of the nanofluids in a square enclosure with an inside cold obstacle;International Journal Innovative of Science and Research,2016

5. Simulation of heat transfer in a square cavity with two fins attached to the hot wall;Energy Procedia,2012

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3