Boundary layer flow of a dusty fluid over a permeable shrinking surface

Author:

Hamid Rohana Abdul,Nazar Roslinda,Pop Ioan

Abstract

Purpose The purpose of this paper is to numerically study the boundary layer problem for the case of two-dimensional flow of dusty fluid over a shrinking surface in the presence of the fluid suction at the surface. Design/methodology/approach The governing equations of the problem are reduced to the system of ordinary differential equations using the similarity transformation and then solved using the bvp4c method in the Matlab software. Findings The effects of the drag coefficient parameter L, the fluid–particle interaction parameter δ, the suction parameter s and the particle loading parameter ω on the flow of the permeable shrinking sheet are investigated. It is found that the aforementioned parameters have different effects in the shrinking sheet flow. This study has also succeeded in discovering the second solution, and through the stability analysis, it is suggested that the solution is unstable and not physically realizable in practice. Practical implications The current findings add to a growing body of literature on the boundary layer problem in the dusty fluid. The dusty fluid is significant in various practical applications such as in the transporting suspended powdered materials through pipes, propulsion and combustion in rockets, the flow of blood in arteries, wastewater treatment and as corrosive particles in engine oil flow. Originality/value Even though the dusty fluid problem has been extensively studied in the flow of the stretching sheet, limited findings can be found over a shrinking flow. In fact, this is the first study to discover the second solution in the dusty fluid problem.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference36 articles.

1. Dual solutions in MHD flow on a nonlinear porous shrinking sheet in a viscous fluid;Boundary Value Problems,2013

2. Effects of suction/blowing on steady boundary layer stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation;International Journal of Heat and Mass Transfer,2011

3. Unsteady flow of a dusty conducting fluid through a pipe;Mechanics Research Communications,1994

4. Unsteady flow of an electrically conducting dusty-gas in a channel due to an oscillating pressure gradient;Applied Mathematical Modelling,1997

5. Particulate viscous effects on the compressible boundary-layer two phase flow over a flat plate;International Communications in Heat and Mass Transfer,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3