Accurate analytical/numerical solution of the heat conduction equation

Author:

Campo Antonio,J. Salazar Abraham,J. Celentano Diego,Raydan Marcos

Abstract

Purpose – The purpose of this paper is to address a novel method for solving parabolic partial differential equations (PDEs) in general, wherein the heat conduction equation constitutes an important particular case. The new method, appropriately named the Improved Transversal Method of Lines (ITMOL), is inspired in the Transversal Method of Lines (TMOL), with strong insight from the method of separation of variables. Design/methodology/approach – The essence of ITMOL revolves around an exponential variation of the dependent variable in the parabolic PDE for the evaluation of the time derivative. As will be demonstrated later, this key step is responsible for improving the accuracy of ITMOL over its predecessor TMOL. Throughout the paper, the theoretical properties of ITMOL, such as consistency, stability, convergence and accuracy are analyzed in depth. In addition, ITMOL has proven to be unconditionally stable in the Fourier sense. Findings – In a case study, the 1-D heat conduction equation for a large plate with symmetric Dirichlet boundary conditions is transformed into a nonlinear ordinary differential equation by means of ITMOL. The numerical solution of the resulting differential equation is straightforward and brings forth a nearly zero truncation error over the entire time domain, which is practically nonexistent. Originality/value – Accurate levels of the analytical/numerical solution of the 1-D heat conduction equation by ITMOL are easily established in the entire time domain.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3