Numerical simulation for Darcy-Forchheimer flow of carbon nanotubes due to convectively heated nonlinear curved stretching surface

Author:

Khan Muhammad Ijaz,Muhammad Khursheed,Hayat Tasawar,Farooq Shahid,Alsaedi Ahmed

Abstract

Purpose This paper aims to discuss the salient aspects of the Darcy–Forchheimer flow of viscous liquid in carbon nanotubes (CNTs). CNTs are considered as nanofluid, and water is taken as the continuous phase liquid. The flow features are discussed via curved surface. Water is taken as the base liquid. Flow is generated via nonlinear stretching. Energy expression is modeled subject to heat generation/absorption. Furthermore, convective conditions are considered at the boundary. The Xue model is used in the mathematical modeling which describes the features of nanomaterials. Both types of CNTs are considered, i.e. single-walled CNTs and multi-walled CNTs. Design/methodology/approach Appropriate transformations are used to convert the flow expressions into dimensionless differential equations. The bvp4c method is used for solution development. Findings Velocity enhances via higher estimations of nanoparticles volume fraction while decays for higher Forchheimer number, curvature parameter, behavior index and porosity parameter. Furthermore, thermal field is an increasing function of nanoparticle volume fraction, behavior index, Forchheimer number and porosity parameter. Originality/value Here, the authors have discussed two-dimensional CNTs-based nanomaterial Darcy–Forchheimer flow of viscous fluid over a curved surface. The authors believe that all the outcomes and numerical techniques are original and have not been published elsewhere.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference50 articles.

1. Nonlinear mechanics of nanotubes conveying fluid;International Journal of Engineering Science,2018

2. Wasserbewegung durch Boden;Zeit Ver Deut Ing,1901

3. Combined effects of the velocity and the aspect ratios on the bifurcation phenomena in a two-sided lid-driven cavity flow;International Journal of Numerical Methods for Heat and Fluid Flow,2018

4. Physical significance of heat generation/absorption and soret effects on peristalsis flow of pseudoplastic fluid in an inclined channel;Journal of Molecular Liquids,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3