Author:
Feng Wei,Wu Yuqin,Fan Yexian
Abstract
Purpose
The purpose of this paper is to solve the shortage of the existing methods for the prediction of network security situations (NSS). Because the conventional methods for the prediction of NSS, such as support vector machine, particle swarm optimization, etc., lack accuracy, robustness and efficiency, in this study, the authors propose a new method for the prediction of NSS based on recurrent neural network (RNN) with gated recurrent unit.
Design/methodology/approach
This method extracts internal and external information features from the original time-series network data for the first time. Then, the extracted features are applied to the deep RNN model for training and validation. After iteration and optimization, the accuracy of predictions of NSS will be obtained by the well-trained model, and the model is robust for the unstable network data.
Findings
Experiments on bench marked data set show that the proposed method obtains more accurate and robust prediction results than conventional models. Although the deep RNN models need more time consumption for training, they guarantee the accuracy and robustness of prediction in return for validation.
Originality/value
In the prediction of NSS time-series data, the proposed internal and external information features are well described the original data, and the employment of deep RNN model will outperform the state-of-the-arts models.
Reference30 articles.
1. Information security strategies: towards an organizational multi-strategy perspective;Journal of Intelligent Manufacturing,2014
2. Cloud computing and security issues in the cloud;International Journal of Network Security & Its Applications,2014
3. Empirical evaluation of gated recurrent neural networks on sequence modeling,2014
4. Improving deep neural networks for LVCSR using rectified linear units and dropout,2013
5. Equilibrated adaptive learning rates for non-convex optimization;Advances in Neural Information Processing Systems,2015
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献