A new method for the prediction of network security situations based on recurrent neural network with gated recurrent unit

Author:

Feng Wei,Wu Yuqin,Fan Yexian

Abstract

Purpose The purpose of this paper is to solve the shortage of the existing methods for the prediction of network security situations (NSS). Because the conventional methods for the prediction of NSS, such as support vector machine, particle swarm optimization, etc., lack accuracy, robustness and efficiency, in this study, the authors propose a new method for the prediction of NSS based on recurrent neural network (RNN) with gated recurrent unit. Design/methodology/approach This method extracts internal and external information features from the original time-series network data for the first time. Then, the extracted features are applied to the deep RNN model for training and validation. After iteration and optimization, the accuracy of predictions of NSS will be obtained by the well-trained model, and the model is robust for the unstable network data. Findings Experiments on bench marked data set show that the proposed method obtains more accurate and robust prediction results than conventional models. Although the deep RNN models need more time consumption for training, they guarantee the accuracy and robustness of prediction in return for validation. Originality/value In the prediction of NSS time-series data, the proposed internal and external information features are well described the original data, and the employment of deep RNN model will outperform the state-of-the-arts models.

Publisher

Emerald

Subject

General Computer Science

Reference30 articles.

1. Information security strategies: towards an organizational multi-strategy perspective;Journal of Intelligent Manufacturing,2014

2. Cloud computing and security issues in the cloud;International Journal of Network Security & Its Applications,2014

3. Empirical evaluation of gated recurrent neural networks on sequence modeling,2014

4. Improving deep neural networks for LVCSR using rectified linear units and dropout,2013

5. Equilibrated adaptive learning rates for non-convex optimization;Advances in Neural Information Processing Systems,2015

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3