An innovative reliability-based design optimization method by combination of dual-stage adaptive kriging and genetic algorithm

Author:

Feng KaixuanORCID,Lu ZhenzhouORCID

Abstract

PurposeThis study aims to propose an efficient method for solving reliability-based design optimization (RBDO) problems.Design/methodology/approachIn the proposed algorithm, genetic algorithm (GA) is employed to search the global optimal solution of design parameters satisfying the reliability and deterministic constraints. The Kriging model based on U learning function is used as a classification tool to accurately and efficiently judge whether an individual solution in GA belongs to feasible region.FindingsCompared with existing methods, the proposed method has two major advantages. The first one is that the GA is employed to construct the optimization framework, which is helpful to search the global optimum solutions of the RBDO problems. The other one is that the use of Kriging model is helpful to improve the computational efficiency in solving the RBDO problems.Originality/valueSince the boundaries are concerned in two Kriging models, the size of the training set for constructing the convergent Kriging model is small, and the corresponding efficiency is high.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3