Construction principle of NES shock absorber and its application in frame structure

Author:

Yang Haixu,Zhu Feng,Wang Haibiao,Yu Liang,Shi Ming

Abstract

Purpose The purpose of this paper is to describe the structure of nonlinear dampers and the dynamic equations, and nonlinear realization principles and optimize the parameters of nonlinear dampers. Using the finite element method to analyze the seismic performance of the frame structure with shock absorber. Design/methodology/approach The nonlinear shock absorber was installed in a six-storey reinforced concrete frame structure to study its seismic performance. The main structure was designed according to the eight degree seismic fortification intensity, and the time history dynamic analysis was carried out by Abaqus finite element software. EL-Centro, Taft and Wenchuan seismic record were selected to analyze the seismic response of the structure under different magnitudes and different acceleration peaks. Findings Through the principle study and parameter analysis of the nonlinear shock absorber, combined with the finite element simulation results, the shock absorption performance and shock absorption effect of the nonlinear energy sink (NES) nonlinear shock absorber are given as follows: first, the damping of the NES shock absorber is satisfied, and the linear spring stiffness and nonlinear stiffness of the shock absorber are based on the relationship k1=kn×kl2, so that the spring design length is fixed, and the linear stiffness of the shock absorber can be obtained. The nonlinear shock absorber has the characteristics of high rigidity and frequency bandwidth, so that the frequency is infinitely close to the frequency of the main structure, and when the mass of the shock absorber satisfies between 0.056 and 1, a good shock absorption effect can be obtained, and the reinforced concrete with the shock absorber is obtained. The frame structure can effectively reduce the seismic response, increase the natural vibration period of the structure and reduce the damage loss of the structure. Second, the spacer and each additional shock absorber have a small difference in shock absorption effect. After the shock absorber parameters are accurately calculated, the number of installations does not affect the shock absorption effect of the structure. Therefore, the shock absorber is properly constructed and accurately calculated. Parameters can reduce costs. Originality/value New shock absorbers reduce earthquake-induced damage to buildings.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference21 articles.

1. Transitions from localization to nonlocalization in strongly nonlinear damped oscillators;Chaos, Solutions & Fractals,2000

2. Shock isolation through passive energy pumping caused by nonsmooth nonlinearities;International Journal of Bifurcation & Chaos,2005

3. Construction and transient characteristics analysis of a nonlinear energy trap;Vibration and Shock,2018

4. Suppression of the vibration characteristics of the flywheel by nonlinear energy traps;Journal of Astronautics,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3