Proposal of steel stress-strain relationships and simple analytical models of beams considering strain-rate effects at elevated temperatures

Author:

Ozaki FuminobuORCID,Umemura TakumiORCID

Abstract

PurposeIn this study, engineering stress-strain relationships considering an effect of strain rate on steel materials at elevated temperatures were formulated and a simplified analytical model using a two-dimensional beam element to analytically examine the effect of strain rate on the load-bearing capacity and collapse temperature was proposed.Design/methodology/approachThe stress-strain relationships taking into account temperature, strain, and strain rate were established based on the past coupon test results with strain rate as the test parameter. Furthermore, an elasto-plastic analysis using a two-dimensional beam element, which considered the effect on strain rate, was conducted for both transient- and steady-state conditions.FindingsThe analytical results agreed relatively well with the test results, which used small steel beam specimens with a rectangular cross-section under various heating rates (transient-state condition) and deformation rates (steady-state condition). It was found that the bending strength and collapse temperature obtained from the parametric analyses agreed relatively well with those evaluated using the effective strength obtained from the coupon tests with strain equal to 0.01 or 0.02 under the fast strain rates.Originality/valueThe effect of stress degradation, including the stress-strain relationships at elevated temperature, was mitigated by considering the effect of strain rate on the analytical model. This is an important point to consider when considering the effect of strain rate on steel structural analysis at elevated temperatures to maintain analytical stability unaccompanied by the stress degradation.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference31 articles.

1. A secant stiffness approach to the fire analysis of steel beams;Journal of Constructional Steel Research,1988

2. Structural response of tall buildings to multiple floor fires;ASCE Journal of Structural Engineering,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3