Design criteria for insulation materials applied in timber frame assemblies

Author:

Tiso Mattia,Just Alar

Abstract

Purpose Insulation materials’ contribution to the fire resistance of timber frame assemblies may vary considerably. At present, Eurocode 5 provides a model for fire design of the load-bearing function of timber frame assemblies with cavities completely filled with stone wool. Very little is known about the fire protection provided by other insulation materials. An improved design model which has the potential to consider the contribution of any insulation material has been introduced by the authors. This paper aims to analyze the parameters that describe in a universal way the protection against the charring given by different insulations not included in Eurocode 5. Design/methodology/approach A series of model-scale furnace tests of floor specimens for three different insulation materials were carried out. An analysis on the charring depth of the residual cross-sections was conducted by means of a resistograph device. Findings The study explains the criteria and procedure followed to derive the coefficients for the improved design model for three insulations involved in the study. Originality/value This research study involves a large experimental work which forms the basis of the proposed design model. This study presents an important step for fire resistance calculations of timber frame assemblies.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference10 articles.

1. European Committee for Standardization;CEN,2004

2. European Committee for Standardization;CEN,2004

3. European Committee for Standardization;CEN,2013

4. Post protection behaviour of wooden wall and floor structures completely filled with glass wool,2010

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3