Supply less sensitive ring voltage-controlled oscillator for microwave L-band frequencies

Author:

Trivedi Parul,Tiwari B.B.

Abstract

Purpose The primary aim of this paper is to present a novel design approach for a ring voltage-controlled oscillator (VCO) suitable for L-band applications, whose oscillation frequency is less sensitive to power supply variations. In a few decades, with the advancement of modern wireless communication equipment, there has been an increasing demand for low-power and robust communication systems for longer battery life. A sudden drop in power significantly affects the performance of the VCO. Supply insensitive circuit design is the backbone of uninterrupted VCO performance. Because of their important roles in a variety of applications, VCOs and phase locked loops (PLLs) have been the subject of significant research for decades. For a few decades, the VCO has been one of the major components used to provide a local frequency signal to the PLL. Design/methodology/approach First, this paper chose to present recent developments on implemented techniques of ring VCO design for various applications. A complementary metal oxide semiconductor (CMOS)-based supply compensation technique is presented, which aims to reduce the change in oscillation frequency with the supply. The proposed circuit is designed and simulated on Cadence Virtuoso in 0.18 µm CMOS process under 1.8 V power supply. Active differential configuration with a cross-coupled NMOS structure is designed, which eliminates losses and negates supply noise. The proposed VCO is designed for excellent performance in many areas, including the L-band microwave frequency range, supply sensitivity, occupied area, power consumption and phase noise. Findings This work provides the complete design aspect of a novel ring VCO design for the L-band frequency range, low phase noise, low occupied area and low power applications. The maximum value of the supply sensitivity for the proposed ring VCO is 1.31, which is achieved by changing the VDD by ±0.5%. A tuning frequency range of 1.47–1.81 GHz is achieved, which falls within the L-band frequency range. This frequency range is achieved by varying the control voltage from 0.0 to 0.8 V, which shows that the proposed ring VCO is also suitable for low voltage regions. The total power consumed by the proposed ring VCO is 14.70 mW, a remarkably low value using this large transistor count. The achievable value of phase noise is −88.76 dBc/Hz @ 1 MHz offset frequency, which is a relatively small value. The performance of the proposed ring VCO is also evaluated by the figure of merit, achieving −163.13 dBc/Hz, which assures the specificity of the proposed design. The process and temperature variation simulations also validate the proposed design. The proposed oscillator occupied an extremely small area of only 0.00019 mm2 compared to contemporary designs. Originality/value The proposed CMOS-based supply compensation method is a unique design with the size and other parameters of the components used. All the data and results obtained show its originality in comparison with other designs. The obtained results are preserved to the fullest extent.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference23 articles.

1. Phase noise and jitter in CMOS ring oscillators;IEEE Journal of Solid-State Circuits,2006

2. Preweighted linearized VCO analog-to-digital converter;IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2017

3. Design and analysis of differential ring voltage controlled oscillator for wide tuning range and low power applications;International Journal of Circuit Theory and Application,2019

4. Design and analysis of wide tuning range ring VCO in 65nm CMOS technology;Radioelectronics and Communications Systems,2019

5. The correlation coefficient: an overview;Critical Reviews in Analytical Chemistry,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High Operating Frequency, Low-Power PFD for PLL Applications;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

2. Low-Phase Noise, Low-Power Four-Stage Ring VCO for OFDM Systems;Journal of Circuits, Systems and Computers;2023-05-11

3. Wide Tuning Range 4-Stage Ring VCO for Phase Locked Loop;2023 First International Conference on Microwave, Antenna and Communication (MAC);2023-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3