MOONACS: a mobile on-/offline NFC-based physical access control system

Author:

Gruntz Dominik,Arnosti Christof,Hauri Marco

Abstract

Purpose The purpose of this paper is to present a smartphone-based physical access control system in which the access points are not directly connected to a central authorization server, but rather use the connectivity of the mobile phone to authorize a user access request online by a central access server. The access points ask the mobile phone whether a particular user has access or not. The mobile phone then relays such a request to the access server or presents an offline ticket. One of the basic requirements of our solution is the independence from third parties like mobile network operators, trusted service managers and handset manufacturers. Design/methodology/approach The authentication of the smartphone is based on public key cryptography. This requires that the private key is stored in a secure element or in a trusted execution environment to prevent identity theft. However, due to the intended independence from third parties, subscriber identity module (SIM)-based secure elements and embedded secure elements (i.e. separate hardware chips on the handset) were not an option and only one of the remaining secure element architectures could be used: host card emulation (HCE) or a microSD-based secure element. Findings This paper describes the implementation of such a physical access control system and discusses its security properties. In particular, it is shown that the HCE approach cannot solve the relay attack under conservative security assumptions and an implementation based on a microSD secure element is presented and discussed. Moreover, the paper also describes an offline solution which can be used if the smartphone is not connected to the access server. In this case, an access token is sent to the access point in response to an access request. These tokens are renewed regularly and automatically whenever the smartphone is connected. Originality/value In this paper, a physical access control system is presented which operates as fast as existing card-based solutions. By using a microSD-based secure element (SE), the authors were able to prevent the software relay attack. This solution is not restricted to microSD-based SEs, it could also be implemented with SIM-based or embedded secure elements (with the consequence that the solution depends on third parties).

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference20 articles.

1. Android Open Source Project (2016), Android Keystore System, available at: https://developer.android.com/training/articles/keystore.html

2. Arnosti, C. and Gruntz, D. (2014), “Man-in-the-middle: analyse des datenverkehrs bei NFC-zahlungen”, IMVS Fokus Report, Vol. 8 No. 1, pp. 24-31.

3. DeviceFidelity (2013), CredenSE 2.10J Classic is NFC Card-Emulation and Certified Java Card SE in a MicroSD, available at: http://devifi.netfirms.com/devifi.com/assets/DeviceFidelity_CredenSE.pdf

4. SmartTokens: delegable access control with nfc-enabled smartphones,2012

5. Keep your enemies close: distance bounding against smartcard relay attacks,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Big Data-Based Access Control System in Educational Information Security Assurance;Wireless Communications and Mobile Computing;2022-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3