Stratal movement and microseismic events induced by multi-well hydrofracturing under varying well spacings and initiation sequences

Author:

Wang YongliangORCID,Li Liangchun,Ju Yang

Abstract

PurposeMulti-well hydrofracturing is a key technology in engineering, and the evaluation, control and optimization of the fracturing network determine the recovery rate of unconventional oil and gas production. In engineering terms, altering well spacing and perforation initiation sequences changes fracture propagation behavior. Fracture propagation can result in fracture-to-fracture and well-to-well interactions. This may be attributed to the interference between fractures caused by squeezing of the reservoir strata. Meanwhile, the stratal movement caused by the propagation of the fractures may lead to either the secondary fracturing of wells with primary fractures or perforation to begin fracturing. Besides, the stratal compression and squeeze of multi-well hydrofracturing will cause earthquakes; the fracture size is different owing to the different fracturing scenarios, and the occurrence of induced microseismic events is still unknown; microseismic events also affect fracture orientation and deflection. If the mechanism of the above mechanical behavior cannot be clarified, optimizing the fracture network and reduce the induced microseismic disaster becomes difficult.Design/methodology/approachIn this study, combined finite element-discrete element models were used to simulate the multi-well hydrofracturing. Numerical cases compared the fracture network, dynamic stratal movement and microseismic events at 50, 75 and 100 m well spacings, respectively, and varying initiation sequence of multiple horizontal wells.FindingsFrom the results, fracture propagation in multi-well hydrofracturing may simulate the propagation and deflection of adjacent fractures and induce fracture-to-fracture and well-to-well interactions. As the well spacing increases, the effect of fracturing-induced stratal movement and squeezing deformation decrease. In alternate fracturing, starting from a well located in the middle can effectively reduce the influence of stratal movement on fracturing, and the fracturing scenario with cross-perforation can minimize the influence of stratal movement. The stratal movement between multiple wells is positively correlated to microseismic events, which behaviors can be effectively weakened by reducing the strata movement.Originality/valueThe fracture network, thermal-hydro-mechanical coupling, fracturing-induced stratal movement and microseismic events were analyzed. This study analyzed the intersection and propagation behavior of fractures in multi-well hydrofracturing, which can be used to evaluate and study the mechanism of hydrofracturing fracture network propagation in multiple horizontal wells and conduct fracture optimization research to form an optimized hydrofracturing scheme by reasonably arranging the spacing between wells and initiation sequences of perforation clusters.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference53 articles.

1. Optimizing spacing of horizontal multistage fractured wells in gas reservoirs,2014

2. Fault activation by hydraulic fracturing in western Canada;Science,2016

3. Why fracking works;Journal of Applied Mechanics,2014

4. Optimal fracture spacing and stimulation design for horizontal wells in unconventional gas reservoirs,2011

5. Experimental study on the initiation and propagation of multi-cluster hydraulic fractures within one stage in horizontal wells;Energies,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3