Author:
Shu Leshi,Jiang Ping,Wan Li,Zhou Qi,Shao Xinyu,Zhang Yahui
Abstract
Purpose
Metamodels are widely used to replace simulation models in engineering design optimization to reduce the computational cost. The purpose of this paper is to develop a novel sequential sampling strategy (weighted accumulative error sampling, WAES) to obtain accurate metamodels and apply it to improve the quality of global optimization.
Design/methodology/approach
A sequential single objective formulation is constructed to adaptively select new sample points. In this formulation, the optimization objective is to select a sample point with the maximum weighted accumulative predicted error obtained by analyzing data from previous iterations, and a space-filling criterion is introduced and treated as a constraint to avoid generating clustered sample points. Based on the proposed sequential sampling strategy, a two-step global optimization approach is developed.
Findings
The proposed WAES approach and the global optimization approach are tested in several cases. A comparison has been made between the proposed approach and other existing approaches. Results illustrate that WAES approach performs the best in improving metamodel accuracy and the two-step global optimization approach has a great ability to avoid local optimum.
Originality/value
The proposed WAES approach overcomes the shortcomings of some existing approaches. Besides, the two-step global optimization approach can be used for improving the optimization results.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献