Experimental and numerical investigations of dynamic strain ageing behaviour in solid solution treated Inconel 718 superalloy

Author:

Song Run-Hua,Qin Hai-Long,Bi Zhong-Nan,Zhang Ji,Chi Hai,Busso Esteban P,Li Dong-Feng

Abstract

Purpose The purpose of this paper is to systematically investigate the dynamic strain aging (DSA) effect in solid solution treated IN718 at different temperatures through experiments and simulations to gain an understanding of the inelastic deformation mechanisms. Design/methodology/approach In the present work, uniaxial tensile tests have been carried out in conjunction with finite element (FE) simulations to investigate the behaviour of the solid solution treated Inconel 718 superalloy at different temperatures and strain rates. Dynamic strain aging (DSA) effects, which manifested during the tests in the form of a negative strain rate sensitivity and stress serrations, are investigated. The most significant DSA effect occurs at 500°C and at a strain rate of 10–4 s-1. In a newly proposed rate-dependent constitutive formulation, the DSA model, proposed by McCormick, Kubin and Estrin, was introduced into slip-assisted solute hardening, and an activation energy-dependent exponential flow rule was adopted. Findings The observed negative strain rate sensitivity and stress serrations are well predicted by a 3 D FE. The FE results indicate that the equivalent plastic strain rate distribution in the specimen gauge length is as highly inhomogeneous as in the other materials exhibiting DSA effects such as aluminium and titanium alloy. During inelastic deformation, propagating high strain rate bands can be closely correlated to the stress serrations. Originality/value For the DSA effect in solid solution treated IN718, the existing researching mainly focuses on the mechanical properties experiment and microstructure observation. In this study, a constitutive formulation, combined with the DSA model, has been proposed, and the mechanical behaviors, including the DSA effect, have been well predicted by a finite element model.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3