Abstract
PurposeFused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value industrial sectors mainly due to parts' anisotropy (related to the deposition strategy) and residual stresses (caused by successive heating cycles). Thus, this study aims to investigate the process improvement and the optimization of the printed parts.Design/methodology/approachIn this work, a meshless technique – the Radial Point Interpolation Method (RPIM) – is used to numerically simulate the viscoplastic extrusion process – the initial phase of the FFF. Unlike the FEM, in meshless methods, there is no pre-established relationship between the nodes so the nodal mesh will not face mesh distortions and the discretization can easily be modified by adding or removing nodes from the initial nodal mesh. The accuracy of the obtained results highlights the importance of using meshless techniques in this field.FindingsMeshless methods show particular relevance in this topic since the nodes can be distributed to match the layer-by-layer growing condition of the printing process.Originality/valueUsing the flow formulation combined with the heat transfer formulation presented here for the first time within an in-house RPIM code, an algorithm is proposed, implemented and validated for benchmark examples.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Reference84 articles.
1. Crack path prediction using the natural neighbour radial point interpolation method;Engineering Analysis with Boundary Elements,2015
2. The natural neighbour radial point interpolation method: solid mechanics and mechanobiology applications,2010
3. Analysis of thick plates by the natural radial element method;International Journal of Mechanical Sciences,2013
4. The analysis of laminated plates using distinct advanced discretization meshless techniques;Composite Structures,2016