Experiments of iterative learning control system using particle swarm optimization by new bounded constraints on velocity and positioning

Author:

Huang Yi-Cheng,Li Ying-Hao

Abstract

Purpose – This paper utilizes the improved particle swarm optimization (IPSO) with bounded constraints technique on velocity and positioning for adjusting the gains of a proportional-integral-derivative (PID) and iterative learning control (ILC) controllers. The purpose of this paper is to achieve precision motion through bettering control by this technique. Design/methodology/approach – Actual platform positioning must avoid the occurrence of a large control action signal, undesirable overshooting, and preventing out of the maximum position limit. Several in-house experiments observation, the PSO mechanism is sometimes out of the optimal solution in updating velocity and updating position of particles, the system may become unstable in real-time applications. The proposed IPSO with new bounded constraints technique shows a great ability to stabilize nonminimum phase and heavily oscillatory systems based on new bounded constraints on velocity and positioning in PSO algorithm is evaluated on one axis of linear synchronous motor with a PC-based real-time ILC. Findings – Simulations and experiment results show that the proposed controller can reduce the error significantly after two learning iterations. The developed method using bounded constraints technique provides valuable programming tools to practicing engineers. Originality/value – The proposed IPSO-ILC-PID controller overcomes the shortcomings of conventional ILC-PID controller with fixed gains. Simulation and experimental results show that the proposed IPSO-ILC-PID algorithm exhibits great speed convergence and robustness. Experimental results confirm that the proposed IPSO-ILC-PID algorithm is effective and achieves better control in real-time precision positioning.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3