Author:
Koziel Slawomir,Bekasiewicz Adrian
Abstract
Purpose
The purpose of this paper is to investigate the strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup.
Design/methodology/approach
Formulation of the multi-objective design problem-oriented toward execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploits variable fidelity modeling, physics- and approximation-based representation of the structure and model correction techniques. The considered approach is suitable for handling various problems pertinent to the design of microwave and antenna structures. Numerical case studies are provided demonstrating the feasibility of the segmentation-based framework for the design of real-world structures in setups with two and three objectives.
Findings
Formulation of appropriate design problem enables identification of the search space region containing Pareto front, which can be further divided into a set of compartments characterized by small combined volume. Approximation model of each segment can be constructed using a small number of training samples and then optimized, at a negligible computational cost, using population-based metaheuristics. Introduction of segmentation mechanism to multi-objective design framework is important to facilitate low-cost optimization of many-parameter structures represented by numerically expensive computational models. Further reduction of the design cost can be achieved by enforcing equal-volumes of the search space segments.
Research limitations/implications
The study summarizes recent advances in low-cost multi-objective design of microwave and antenna structures. The investigated techniques exceed capabilities of conventional design approaches involving direct evaluation of physics-based models for determination of trade-offs between the design objectives, particularly in terms of reliability and reduction of the computational cost. Studies on the scalability of segmentation mechanism indicate that computational benefits of the approach decrease with the number of search space segments.
Originality/value
The proposed design framework proved useful for the rapid multi-objective design of microwave and antenna structures characterized by complex and multi-parameter topologies, which is extremely challenging when using conventional methods driven by population-based metaheuristics algorithms. To the authors knowledge, this is the first work that summarizes segmentation-based approaches to multi-objective optimization of microwave and antenna components.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Reference72 articles.
1. Application of genetic algorithm to design of sequentially rotated circularly polarised dual-feed microstrip patch antenna array;Electronics Letters,2008
2. Compact UWB monopole antenna for automotive communications;IEEE Transactions on Antennas and Propagation,2015
3. Space mapping: the state of the art;IEEE Transactions on Microwave Theory and Techniques,2004
4. Multi-objective optimization of yagi–uda antenna applying enhanced firefly algorithm with adaptive cost function;IEEE Transactions on Magnetics,2018
5. Improved distributed hypercube sampling,2002
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献