Numerical solution of nonlinear stochastic Itô – Volterra integral equation driven by fractional Brownian motion

Author:

Saha Ray S.,Singh S.

Abstract

Purpose This paper aims to study fractional Brownian motion and its applications to nonlinear stochastic integral equations. Bernstein polynomials have been applied to obtain the numerical results of the nonlinear fractional stochastic integral equations. Design/methodology/approach Bernstein polynomials have been used to obtain the numerical solutions of nonlinear fractional stochastic integral equations. The fractional stochastic operational matrix based on Bernstein polynomial has been used to discretize the nonlinear fractional stochastic integral equation. Convergence and error analysis of the proposed method have been discussed. Findings Two illustrated examples have been presented to justify the efficiency and applicability of the proposed method. The corresponding obtained numerical results have been compared with the exact solutions to establish the accuracy and efficiency of the proposed method. Originality/value To the best of the authors’ knowledge, nonlinear stochastic Itô–Volterra integral equation driven by fractional Brownian motion has been for the first time solved by using Bernstein polynomials. The obtained numerical results well establish the accuracy and efficiency of the proposed method.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference24 articles.

1. Numerical solution of nonlinear stochastic integral equation by stochastic operational matrix based on Bernstein polynomialsBulletin mathématique de la Société des;Sciences Mathématiques de Roumanie,2015

2. Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration;Applied Mathematics and Computation,2007

3. Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion;Communications in Nonlinear Science and Numerical Simulation,2018

4. Random Fourier transforms;Transactions of the American Mathematical Society,1951

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3