Speeding up estimation of the Hurst exponent by a two-stage procedure from a large to small range

Author:

Chang Yen-Ching

Abstract

Purpose The Hurst exponent has been very important in telling the difference between fractal signals and explaining their significance. For estimators of the Hurst exponent, accuracy and efficiency are two inevitable considerations. The main purpose of this study is to raise the execution efficiency of the existing estimators, especially the fast maximum likelihood estimator (MLE), which has optimal accuracy. Design/methodology/approach A two-stage procedure combining a quicker method and a more accurate one to estimate the Hurst exponent from a large to small range will be developed. For the best possible accuracy, the data-induction method is currently ideal for the first-stage estimator and the fast MLE is the best candidate for the second-stage estimator. Findings For signals modeled as discrete-time fractional Gaussian noise, the proposed two-stage estimator can save up to 41.18 per cent the computational time of the fast MLE while remaining almost as accurate as the fast MLE, and even for signals modeled as discrete-time fractional Brownian motion, it can also save about 35.29 per cent except for smaller data sizes. Originality/value The proposed two-stage estimation procedure is a novel idea. It can be expected that other fields of parameter estimation can apply the concept of the two-stage estimation procedure to raise computational performance while remaining almost as accurate as the more accurate of two estimators.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3