Generative design and analysis of a double-wishbone suspension assembly: a methodology for developing constraint oriented solutions for optimum material distribution

Author:

Bhat Aayush,Gupta Vyom,Aulakh Savitoj Singh,Elsen Renold S.

Abstract

Purpose The purpose of this paper is to implement the generative design as an optimization technique to achieve a reasonable trade-off between weight and reliability for the control arm plate of a double-wishbone suspension assembly of a Formula Student race car. Design/methodology/approach The generative design methodology is applied to develop a low-weight design alternative to a standard control arm plate design. A static stress simulation and a fatigue life study are developed to assess the response of the plate against the loading criteria and to ensure that the plate sustains the theoretically determined number of loading cycles. Findings The approach implemented provides a justifiable outcome for a weight-factor of safety trade-off. In addition to optimal material distribution, the generative design methodology provides several design outcomes, for different materials and fabrication techniques. This enables the selection of the best possible outcome for several structural requirements. Research limitations/implications This technique can be used for applications with pre-defined constraints, such as packaging and loading, usually observed in load-bearing components developed in the automotive and aerospace sectors of the manufacturing industry. Practical implications Using this technique can provide an alternative design solution to long periods spent in the design phase, because of its ability to generate several possible outcomes in just a fraction of time. Originality/value The proposed research provides a means of developing optimized designs and provides techniques in which the design developed and chosen can be structurally analyzed.

Publisher

Emerald

Subject

General Engineering

Reference16 articles.

1. Design and optimization of a formula SAE® frame;SAE Transactions,2006

2. Borg, L. (2009), “An approach to using finite element models to predict suspension member loads in a formula SAE vehicle”, available at: https://vtechworks.lib.vt.edu/handle/10919/34020 (accessed 30 May 2021).

3. Cobi, A.C. (2012), “Design of a carbon fiber suspension system for FSAE applications”, available at: https://dspace.mit.edu/handle/1721.1/74433 (accessed 30 May 2021).

4. Assessment of design for additive manufacturing based on CAD platforms,2019

5. Comprehensive view on racing car upright design and manufacturing;Symmetry,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3