Forklift truck performance simulation and fuel consumption estimation

Author:

d'Apolito Luigi,Hong Hanchi

Abstract

Purpose Forklift trucks are generally operated with frequent accelerations and stops, reverse and operations of load handling. This way of operation increases the energy losses and consequently the need for reduction of fuel consumption from forklift customers. This study aims to build a model to replicate the performance of forklifts during real operations and estimate fuel consumption without building a real prototype. Design/methodology/approach AVL Cruise has been used to simulate forklift powertrain and hydraulic circuit. The driving cycles used for this study were in accordance with the standard VDI 2198. Artificial neural networks (ANNs), trained by the results of AVL Cruise simulations, have been used to forecast the fuel consumption for a large set of possible driving cycles. Findings The comparison between simulated and experimental data verified that AVL Cruise model was able to simulate the performance of real forklifts, but the results were only valid for the specified driving cycle. The ANNs, trained by the results of AVL Cruise for a certain number of driving cycles, have been found effective to forecast the fuel consumption of a larger number of driving cycles following the prescriptions of the standard VDI 2198. Originality/value A new method based on ANN, trained by AVL Cruise simulation results, has been introduced to forecast the forklift fuel consumption, reducing the computational time and the cost of experimental tests.

Publisher

Emerald

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3