A mini work-cell for handling and assembling microcomponents

Author:

Fontana Gianmauro,Ruggeri Serena,Fassi Irene,Legnani Giovanni

Abstract

Purpose – The purpose of this paper was the design, development, and test of a flexible and reconfigurable experimental setup for the automatic manipulation of microcomponents, enhanced by an accurately developed vision-based control. Design/methodology/approach – To achieve a flexible and reconfigurable system, an experimental setup based on 4 degrees of freedom robot and a two-camera vision system was designed. Vision-based strategies were adopted to suitably support the motion system in easily performing precise manipulation operations. A portable and flexible program, incorporating the machine vision module and the control module of the task operation, was developed. Non-conventional calibration strategies were also conceived for the complete calibration of the work-cell. The developed setup was tested and exploited in the execution of repetitive tests of the grasping and releasing of microcomponents, testing also different grasping and releasing strategies. Findings – The system showed its ability in automatically manipulating microcomponents with two different types of vacuum grippers. The performed tests evaluated the success and precision of the part grasping and release, which is a crucial aspect of micromanipulation. The results confirm reliability in grasping and that the release is precluded by adhesive effects. Thus, different strategies were adopted to improve the efficiency in the release of stuck components without negatively affecting the accuracy nor the repeatability of the positioning. Originality/value – This work provided a flexible and reconfigurable architecture devoted to the automatic manipulation of microcomponents, methodologies for the characterization of different vacuum microgrippers, and quantitative information about their performance, to date missing in literature.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3