Bio-inspired neural network with application to license plate recognition: hysteretic ELM approach

Author:

Chen Liang,Cui Leitao,Huang Rong,Ren Zhengyun

Abstract

Purpose This paper aims to present a bio-inspired neural network for improvement of information processing capability of the existing artificial neural networks. Design/methodology/approach In the network, the authors introduce a property often found in biological neural system – hysteresis – as the neuron activation function and a bionic algorithm – extreme learning machine (ELM) – as the learning scheme. The authors give the gradient descent procedure to optimize parameters of the hysteretic function and develop an algorithm to online select ELM parameters, including number of the hidden-layer nodes and hidden-layer parameters. The algorithm combines the idea of the cross validation and random assignment in original ELM. Finally, the authors demonstrate the advantages of the hysteretic ELM neural network by applying it to automatic license plate recognition. Findings Experiments on automatic license plate recognition show that the bio-inspired learning system has better classification accuracy and generalization capability with consideration to efficiency. Originality/value Comparing with the conventional sigmoid function, hysteresis as the activation function enables has two advantages: the neuron’s output not only depends on its input but also on derivative information, which provides the neuron with memory; the hysteretic function can switch between the two segments, thus avoiding the neuron falling into local minima and having a quicker learning rate. The improved ELM algorithm in some extent makes up for declining performance because of original ELM’s complete randomness with the cost of a litter slower than before.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference21 articles.

1. Two machine learning approaches for short-term wind speed time-series prediction;IEEE Transactions on Neural Networks and Learning Systems,2015

2. The hysteretic Hopfield neural network;IEEE Transactions on Neural Networks,2000

3. Synchronization stability of a distributed hysteresis controlled system,2012

4. Extreme learning machines: new trends and application;Science China Information Sciences,2015

5. A model of visuomotor mechanisms in frog optictectum;Mathe- matical biosciences,1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3