Prediction of instantaneous driving safety in emergency scenarios based on connected vehicle basic safety messages

Author:

Yu Kai,Peng Liqun,Ding Xue,Zhang Fan,Chen Minrui

Abstract

Purpose Basic safety message (BSM) is a core subset of standard protocols for connected vehicle system to transmit related safety information via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). Although some safety prototypes of connected vehicle have been proposed with effective strategies, few of them are fully evaluated in terms of the significance of BSM messages on performance of safety applications when in emergency. Design/methodology/approach To address this problem, a data fusion method is proposed to capture the vehicle crash risk by extracting critical information from raw BSMs data, such as driver volition, vehicle speed, hard accelerations and braking. Thereafter, a classification model based on information-entropy and variable precision rough set (VPRS) is used for assessing the instantaneous driving safety by fusing the BSMs data from field test, and predicting the vehicle crash risk level with the driver emergency maneuvers in the next short term. Findings The findings and implications are discussed for developing an improved warning and driving assistant system by using BSMs messages. Originality/value The findings of this study are relevant to incorporation of alerts, warnings and control assists in V2V applications of connected vehicles. Such applications can help drivers identify situations where surrounding drivers are volatile, and they may avoid dangers by taking defensive actions.

Publisher

Emerald

Reference28 articles.

1. Methodology for assessing adaptive cruise control behavior;IEEE Transactions on Intelligent Transportation Systems,2003

2. The 100-Car naturalistic driving study, phase II-Results of the100-Car field experiment,2005

3. Joint driver volition classification and tracking of vehicles,2006

4. Traffic accident prediction using 3d model based vehicle tracking;IEEE Transactions on Vehicular Technology,2004

5. Situation assessment of an autonomous emergency brake for arbitrary vehicle-to-Vehicle collision scenarios;IEEE Transactions on Intelligent Transportation Systems,2009

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3