A new bayesian spatial model for brand positioning

Author:

Park Joonwook,Rajagopal Priyali,Dillon William,Chaiy Seoil,DeSarbo Wayne

Abstract

Purpose Joint space multidimensional scaling (MDS) maps are often utilized for positioning analyses and are estimated with survey data of consumer preferences, choices, considerations, intentions, etc. so as to provide a parsimonious spatial depiction of the competitive landscape. However, little attention has been given to the possibility that consumers may display heterogeneity in their information usage (Bettman et al., 1998) and the possible impact this may have on the corresponding estimated joint space maps. This paper aims to address this important issue and proposes a new Bayesian multidimensional unfolding model for the analysis of two or three-way dominance (e.g. preference) data. The authors’ new MDS model explicitly accommodates dimension selection and preference heterogeneity simultaneously in a unified framework. Design/methodology/approach This manuscript introduces a new Bayesian hierarchical spatial MDS model with accompanying Markov chain Monte Carlo algorithm for estimation that explicitly places constraints on a set of scale parameters in such a way as to model a consumer using or not using each latent dimension in forming his/her preferences while at the same time permitting consumers to differentially weigh each utilized latent dimension. In this manner, both preference heterogeneity and dimensionality selection heterogeneity are modeled simultaneously. Findings The superiority of this model over existing spatial models is demonstrated in both the case of simulated data, where the structure of the data is known in advance, as well as in an empirical application/illustration relating to the positioning of digital cameras. In the empirical application/illustration, the policy implications of accounting for the presence of dimensionality selection heterogeneity is shown to be derived from the Bayesian spatial analyses conducted. The results demonstrate that a model that incorporates dimensionality selection heterogeneity outperforms models that cannot recognize that consumers may be selective in the product information that they choose to process. Such results also show that a marketing manager may encounter biased parameter estimates and distorted market structures if he/she ignores such dimensionality selection heterogeneity. Research limitations/implications The proposed Bayesian spatial model provides information regarding how individual consumers utilize each dimension and how the relationship with behavioral variables can help marketers understand the underlying reasons for selective dimensional usage. Further, the proposed approach helps a marketing manager to identify major dimension(s) that could maximize the effect of a change of brand positioning, and thus identify potential opportunities/threats that existing MDS methods cannot provides. Originality/value To date, no existent spatial model utilized for brand positioning can accommodate the various forms of heterogeneity exhibited by real consumers mentioned above. The end result can be very inaccurate and biased portrayals of competitive market structure whose strategy implications may be wrong and non-optimal. Given the role of such spatial models in the classical segmentation-targeting-positioning paradigm which forms the basis of all marketing strategy, the value of such research can be dramatic in many marketing applications, as illustrated in the manuscript via analyses of both synthetic and actual data.

Publisher

Emerald

Subject

Management Science and Operations Research,Strategy and Management,General Decision Sciences

Reference58 articles.

1. Dimensions of consumer expertise;Journal of Consumer Research,1987

2. Constructive consumer choice processes;Journal of Consumer Research,1998

3. Account-level modeling for trade promotion: an application of a constrained parameter hierarchical model;Journal of the American Statistical Association,1999

4. The little engines that could: modeling the performance of world wide web search engines;Marketing Science,2000

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Communication During a Pandemic;Research Anthology on Managing Crisis and Risk Communications;2022-07-01

2. Communication During a Pandemic;Digital Services in Crisis, Disaster, and Emergency Situations;2021

3. Social brand engagement and brand positioning for higher educational institutions: an empirical study in Sri Lanka;Journal of Marketing for Higher Education;2020-11-17

4. Adaptive Multidimensional Scaling: Brand Positioning Based on Decision Sets and Dissimilarity Judgments;Customer Needs and Solutions;2020-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3