Real-time vehicle detection for traffic monitoring by applying a deep learning algorithm over images acquired from satellite and drone

Author:

Vohra D.S.ORCID,Garg Pradeep Kumar,Ghosh Sanjay

Abstract

PurposeThe purpose is to design a system in which drones can control traffic most effectively using a deep learning algorithm.Design/methodology/approachDrones have now started entry into each facet of life. The entry of drones has made them a subject of great relevance in the present technological era. The span of drones is, however, very broad due to various kinds of usages leading to different types of drones. Out of the many usages, one usage which is presently being widely researched is traffic monitoring as traffic monitoring can hover over a particular area. This paper specifically brings out the basic algorithm You Look Only Once (YOLO) which may be used for identifying the vehicles. Consequently, using deep learning YOLO algorithm, identification of vehicles will, therefore, help in easy regulation of traffic in streetlights, avoiding accidents, finding out the culprit drivers due to which traffic jam would have taken place and recognition of a pattern of traffic at various timings of the day, thereby announcing the same through radio (namely, Frequency Modulation (FM)) channels, so that people can take the route which is the least jammed.FindingsThe study found that the object(s) detected by the deep learning algorithm is almost the same as if seen from a naked eye from the top view. This led to the conclusion that the drones may be used for traffic monitoring, in the days to come, which was not the case earlier.Originality/valueThe main research content and key algorithm have been introduced. The research is original. None of the parts of this research paper has been published anywhere.

Publisher

Emerald

Subject

Computer Science Applications,History,Education

Reference27 articles.

1. UAV aerodynamic design involving genetic algorithm and artificial neural network for wing preliminary computation;Aerospace Science and Technology,2019

2. UAV's obstacle sensing techniques – a perspective;International Journal of Intelligent Unmanned Systems,2018

3. Biswas, A. (2022), “Deep learning in vehicle detection”, M Tech Thesis, Department of Civil Engineering, Indian Institute of Technology (IIT) Roorkee.

4. Optimal speed and accuracy of object detection,2020

5. Flight from pilotless planes;Science,1981

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3