Analytical and finite element methodology modeling of the thermal management of 3D IC with through silicon via

Author:

Wu Mei-Ling,Lan Jia-Shen

Abstract

Purpose This paper aims to develop the thermal resistance network model based on the heat dissipation paths from the multi-die stack to the ambient and takes into account the composite effects of the thermal spreading resistance and one-dimensional (1D) thermal resistance. The thermal spreading resistance comprises majority of the thermal resistance when heat flows in the horizontal direction of a large plate. The present study investigates the role of determining the temperature increase compared to the thermal resistances intrinsic to the 3D technology, including the thermal resistances of bonding layers and through silicon vias (TSVs). Design/methodology/approach This paper presents an effective method that can be applied to predict the thermal failure of the heat source of silicon chips. An analytical model of the 3D integrated circuit (IC) package, including the full structure, is developed to estimate the temperature of stacked chips. Two fundamental theories are used in this paper – Laplace’s equation and the thermal resistance network – to calculate 1D thermal resistance and thermal spreading resistance on the 3D IC package. Findings This paper provides a comprehensive model of the 3D IC package, thus improving the existing analytical approach for predicting the temperature of the heat source on the chip for the 3D IC package. Research limitations/implications Based on the aforementioned shortcomings, the present study aims to determine if the use of an analytical resistance model would improve the handling of a temperature increase on the silicon chips in a 3D IC package. To achieve this aim, a simple rectangular plate is utilized to analyze the temperature of the heat source when applying the heat flux on the area of the heat source. Next, the analytical model of a pure plate is applied to the 3D IC package, and the temperature increase is analyzed and discussed. Practical implications The main contribution of this paper is the use of a simple concept and a theoretical resistance network model to improve the current understanding of thermal failure by redesigning the parameters or materials of a printed circuit board. Social implications In this paper, an analytical model of a 3D IC package was proposed based on the calculation of the thermal resistance and the analysis of the network model. Originality/value The aim of this work was to estimate the mean temperature of the silicon chips and understand the heat convection paths in the 3D IC package. The results reveal these phenomena of the complete structure, including TSV and bump, and highlight the different thermal conductivities of the materials used in creating the 3D IC packages.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3