Stable interconnections for LTCC micro-heater using isothermal solidification technique

Author:

Suresh Kumar Duguta,Suri Nikhil,Khanna P.K.

Abstract

Purpose The purpose of this work is to explore the forms of intermetallic phase compounds (IMPCs) in Pt/In/Au and Pt/In/Ag joints by using isothermal solidification. This lead-free technique leads to formation of IMPCs having high-temperature stable joints for platinum-based micro-heater gas sensor fabricated on low temperature co-fired ceramic (LTCC) substrate. Design/methodology/approach Proposed task is to make an interconnection for Pt micro-heater electrode pad to the silver and gold thick-films printed on LTCC substrate. Both Pt/In/Au and Pt/In/Ag configured joints with different interactive areas prepared at 190 and 220°C to study temperature and contact surface area effects on ultimate tensile strength of the joints, for a 20 s reaction time, at 0.2 MPa applied pressure. Those delaminated joint interfaces studied under SEM, EDAX and XRD. Findings IMPCs identified through material analysis using diffraction analysis of XRD data are InPt3, AgIn2, AgPt, AgPt3, Au9In4 and other stoichiometric compounds. The interactive surface area between thick-films and temperature increment shows improvement in the formations of IMPCs and mechanical stability of joints. These IMPCs-based joints have improved the mechanical stability to the joints to sustain even at high operating temperatures. Elemental mapping of the weak joint contact interface shows unwanted oxide formations also reported. Physical inter-locking followed by the diffusion phenomenon on the silver substrate strengthen the interconnection has been noticed. Research limitations/implications Inert gas environment creation inside the chamber to isolate the lead-free joint placed between heating stamp pads to avoid oxide formations at the interface while cooling which adds up to the cost of manufacturing. Most of the oxides at a joint-interface increase minute to moderate resistance with respect to the level of oxides took place. These oxides contributed heat certainly damage the micro-heater based gas sensors while functioning. Practical implications These isothermal solidification-based lead-free solder joints formation replace the existing lead-based packaging techniques. These lead-free interconnections on ceramic or LTCC substrate are reliable and durable, especially those designed to work for heavy-duty engines, even at severe environment conditions. Originality/value Platinum micro-heater-based gas sensors handles over a wide-range of temperatures about 300 to 500°C. The specific temperature level of different oxide films (SnO2) on the micro-heater is capable of detecting various specific gases. This feature of platinum based gas sensor demands durable and mechanically stable joints for continuous monitoring.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Reference25 articles.

1. Choosing a low-cost alternative to sac alloys for pcb assembly: preliminary work,2011

2. Interfacial reactions in the Pb-free composite solders with indium layers;Journal of Electronic Materials,2006

3. Mechanical behavior of au-in intermetallics for low temperature solder diffusion bonding;Journal of Materials Science,2009

4. Isothermal solidification of Cu/Sn diffusion couples to form thin-solder joints;Journal of Electronic Materials,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3