A digital arbitrary size kernel convolution smart image sensor based on in-pixel pulse width processors

Author:

Habibi Mehdi,Danesh Ahmad Reza

Abstract

Purpose The purpose of this study is to propose a pulse width based, in-pixel, arbitrary size kernel convolution processor. When image sensors are used in machine vision tasks, large amount of data need to be transferred to the output and fed to a processor. Basic and low-level image processing functions such as kernel convolution is used extensively in the early stages of most machine vision tasks. These low-level functions are usually computationally extensive and if the computation is performed inside every pixel, the burden on the external processor will be greatly reduced. Design/methodology/approach In the proposed architecture, digital pulse width processing is used to perform kernel convolution on the image sensor data. With this approach, while the photocurrent fluctuations are expressed with changes in the pulse width of an output signal, the small processor incorporated in each pixel receives the output signal of the corresponding pixel and its neighbors and produces a binary coded output result for that specific pixel. The process is commenced in parallel among all pixels of the image sensor. Findings It is shown that using the proposed architecture, not only kernel convolution can be performed in the digital domain inside smart image sensors but also arbitrary kernel coefficients are obtainable simply by adjusting the sampling frequency at different phases of the processing. Originality/value Although in-pixel digital kernel convolution has been previously reported however with the presented approach no in-pixel analog to binary coded digital converter is required. Furthermore, arbitrary kernel coefficients and scaling can be deployed in the processing. The given architecture is a suitable choice for smart image sensors which are to be used in high-speed machine vision tasks.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference15 articles.

1. Latest in VISION SENSOR technology as well as innovations in sensing, pressure, force, medical, particle size and many other applications;Sensor Review,2017

2. Sensors key to advances in precision agriculture;Sensor Review,2017

3. Mixed signal SIMD processor array vision chip for real-time image processing;Analog Integrated Circuits and Signal Processing,2013

4. A CMOS image sensor with on-chip image compression based on predictive boundary adaptation and memoryless QTD algorithm;IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2011

5. Design and application of industrial machine vision systems;Robotics and Computer-Integrated Manufacturing,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3