Fluorescence quenching-based bodipy-boronic acid linked viologen dual system for potential glucose sensing applications

Author:

Demirel Topel Seda,Beyaz Mustafa İlker

Abstract

Purpose The purpose of this study is to develop a non-enzymatic based glucose-sensing platform composed of Bodipy-BBV dual system which can be monitored by a photodetector under the blue LED excitation. Design/methodology/approach The sensor has been developed from a dual system including a fluorescent dye, an aldehyde derivative of boron dipyrromethene (Bodipy) and a quencher, orto-boronic acid linked viologen (o-BBV) where their combination resulted in a ratiometric fluorescence quenching in ethanol: PBS (1:1, pH:7.4) solution under UV light excitation. By glucose addition, o-BBV has been released from the Bodipy and binded to cis-diol groups of glucose, thereby fluorescence emission of Bodipy has been regained. Furthermore, a setup consisting of a light emitting diode (LED) and a photodiode (PD) was used to prove electrical detection of glucose without the need for expensive and bulky optical equipment, enabling the development of a miniaturized and low-cost glucose-sensing platform. Findings The fluorescence intensity of the Bodipy derivative in the solution (2 × 10−6 M) was diminished by 93% in the presence of o-BBV solution (5 × 10−3 M). Upon the glucose addition, 81% of the Bodipy fluorescence intensity has been recovered after introduction of 30 mM of glucose, where the ratio of o-BBV/Bodipy was 35:1. A linear response between 10 and 30 mM glucose concentration was obtained, which covers the biologically significant range. A high correlation between the photodiode current and Bodipy fluorescence intensity was achieved. Originality/value Even though Bodipy molecules are known with their superior optical properties and applied to the fluorescence-based detection of glucose, to the best of the authors’ knowledge, no work has been reported on Bodipy-BBV dual system to detect glucose molecules as a non-enzymatic based method. This design enables the dye and the quencher to independently coexist in the solution, allowing for tuning of their individual concentrations to optimize the glucose sensitivity. Furthermore, an electrical light detection scheme consisting of a LED and a photodiode has been implemented to eliminate the bulky optical equipment from the measurement setup and further this work for the development of a compact and inexpensive sensor. The results presented here demonstrate the feasibility of this system for the development of a novel glucose sensor.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3