Prediction of the flow, reaction and heat transfer in an oxy‐fuel glass furnace

Author:

Carvalho M.G.M.S.,Durão D.F.G.,Pereira J.C.F.

Abstract

A three‐dimensional computer simulation of a combustion chamber used in the glass production industry is presented. A numerical solution technique is used to solve the governing time‐averaged partial differential equation and the physical modelling for turbulence, combustion and thermal radiation. A two‐equation turbulence model is employed along with a combustion model based on a fast kinetics statistical approach. A radiation model is used along with the Hottel mixed grey gas model. To solve the governing differential equations an implicit technique of finite‐difference kind is applied. The economy of the computations is very considerably enhanced by the separate calculation of the burner and bulk glass combustion chamber regions, in a manner which takes account of the differing physical nature of their flows. The burner outlet region is calculated with an axisymmetric model. Such two‐dimensional calculations allowed a good resolution of the burner outlet, and provide the inlet conditions for the three‐dimensional calculations of the glass furnace. The prediction procedure is applied to an industrial glass furnace, which operates with oxy‐fuel conditions. Measurements of mean gas temperature and concentrations were performed at different locations in the furnace. The calculated flame length, temperature field and concentrations are with satisfactory agreement with the measured ones.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference25 articles.

1. Mathematical Simulation of an End-Port Regenerative Glass Furnace

2. Meghed, I. E. A. The prediction of three-dimensional gas-fired combustion chamber flows, PhD Thesis,London University (1979)

3. Carvalho, M. G. Computer simulation of a glass furnace, PhD Thesis,London University (1983)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3