Flexible fixture design with applications to assembly of sheet metal automotive body parts

Author:

Arzanpour S.,Fung J.,Mills J.K.,Cleghorn W.L.

Abstract

PurposeTo design a reconfigureable flexible fixture for the assembly of a set of sheet metal automotive body parts. Reconfigureable fixturing permits different parts to be grasped for assembly by a fixture without the need to conduct costly redesign and fabrication of hardware fixtures, which is an industry standard in widespread use in industry. While somewhat more complex than fixtures in current use, reconfigureable fixtures provide one solution to the problem of costly redesign of fixtures due to changes in dimensions, or geometry of parts to be assembled.Design/methodology/approachWe propose a novel reconfigureable fixture for robotic assembly of a number of different parts. Motivated by the marine organism, O. vulgaris, commonly referred to as an octopus, which grasps different objects or prey using suction cups, the proposed fixture has three fingers, each equipped with a suction cup, to facilitate the grasping process and increase grasp flexibility. Using this design approach, the fixture is sufficiently general in design to grasp several different parts. To position the suction cups located on the flexible fixture, two linkage‐based mechanisms are employed. Pneumatic cylinders and electric motors are used as actuators. A prototype flexible fixture has been built and experimental results with this prototype confirm the effectiveness of the proposed flexible fixture. Software has been developed to calculate the relative positions and angles in the mechanism as required for reconfiguration.FindingsThe proposed reconfigureable fixture, used as an end‐of‐arm tool, permits each of a set of four sheet metal parts to be successfully grasped permitting assembly of these four components, in a robotic assembly work cell.Research limitations/implicationsThe proposed flexible fixture is a simple proof‐of‐concept device that is suitable for a laboratory setting. We do not consider part localization of parts when grasped by the reconfigureable fixture.Practical implicationsAssembly operations, in industrial manufacturing operations, are typically heavily reliant on hardware fixtures devices to orient and clamp parts together during assembly operations. While of great importance in such operations, hardware fixtures are very costly to design and build. Further, fixtures are designed for use with parts of specific dimensions and geometry, hence cannot be used to grasp or orient parts with even very small differences in dimensions or geometry. Typically, if parts with different dimensions or geometry are to be assembled, new hardware fixtures must be designed and manufactured to grasp and orient these parts. This lack of flexibility leads to substantial manufacturing costs associated with fixturing. Reconfigureable fixtures permit parts with different geometries to be grasped and oriented for assembly.Originality/valueReconfigureable fixtures for use in the automotive manufacturing sector is an important development due to the highly competitive nature of this industry. Rapid introduction of new models of vehicles is greatly facilitated through the use of reconfigureable fixtures which can be reprogrammed to grasp parts of different geometries required for new vehicle models.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Jigs and fixtures in production: A systematic literature review;Journal of Manufacturing Systems;2024-02

2. Modeling and experimental design of a generalized gripper;Mechanism and Machine Theory;2023-03

3. Reinforcement learning based path planning of multiple agents of SwarmItFIX robot for fixturing operation in sheetmetal milling process;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2022-02-16

4. Robot-Guided Lightweight Engineering Fixtures: Process Lightweight Engineering for More Flexible, Resource-Saving and Energy-Efficient Production;2021 6th International Conference on Mechanical Engineering and Robotics Research (ICMERR);2021-12-11

5. Effect of focal position offset on joint integrity of AA1050 battery busbar assembly during remote laser welding;Journal of Materials Research and Technology;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3