A study of capillary forces as a gripping principle

Author:

Lambert Pierre,Delchambre Alain

Abstract

PurposeThis work aimed at studying the use of capillary forces as a gripping principle in the handling of sub‐millimetric sized components. The goal was to present the results as design rules of so‐called capillary grippers.Design/methodology/approachEach parameter (surrounding environment, materials, volume of liquid, separation distance, gripper geometry and gripper size, relative orientation of the gripper with respect to the component) has been quantified, either numerically or experimentally. In some validation cases, both means have been used.FindingsThe capillary forces can be modified between a maximum Fmax and a minimum Fmin so that a component with any mass m between Fmin/g and Fmax/g can be picked up and released.Research limitations/implicationsBy comparison with some existing capillary grippers prototypes, this work is only a theoretical and experimental study. Nevertheless, its originality lies in the exhaustive study and quantification of all parameters so that most of the capillary grippers of the literature can be explained or improved with these results.Practical implicationsThe main implication of the capillary gripping is that it provides an alternative to existing gripping principles (vacuum grippers, tweezers). This principle is strong enough (a few mN) and well adapted to pick up components with only one free accessible surface. The scaling laws are the most favorable (FL). It provides a “soft” picking, avoiding high contact forces.Originality/valueThe originality lies in the exhaustive quantification of the role of each parameter. These results can be used by researchers and designers.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference16 articles.

1. Adamson, A.W. and Gast, A.P. (1997), Physical Chemistry of Surfaces, 6th ed., Wiley, New York, NY.

2. Agnus, J. (2003), “Contribution à la micromanipulation: Etude, Réalisation, Caractérisation et Commande d'une Micropince Piézoélectrique”, PhD thesis, Laboratoire d'Automatique de Besançon, UMR CNRS 6596.

3. Bark, K‐B. (1999), Adhäsives Greifen von kleinen Teilen mittels niedrigviskoser Flüssigkeiten, Springer‐Verlag, New York, NY.

4. Bhushan, B. (2004), Microsystems Mechanical Design, Summer School of the Centre International des Sciences Mécaniques, Udine, 28 June‐2 July.

5. de Lazzer, A., Dreyer, M. and Rath, H.J. (1999), “Particle‐surface capillary forces”, Langmuir, Vol. 15, pp. 4551‐9.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3