Direct tool steel injection mould inserts through the Arcam EBM free‐form fabrication process

Author:

Gibbons Gregory J.,Hansell Robert G.

Abstract

PurposeThe aim of this study is to demonstrate the benefit of design flexibility afforded by the Arcam free‐form fabrication process in the direct manufacture of injection mould inserts with complex cooling channel configurations and the process efficiency and quality gains achieved through using such inserts.Design/methodology/approachThe manufacturing process of a flood cooled injection mould insert using the Arcam EBM S12 layered manufacturing process is presented. The insert is then evaluated against two other inserts (one un‐cooled and one traditionally baffle cooled (BC)) in the manufacture of test components, with the temperature of the insert and components recorded. The process conditions were adjusted (reduced cooling time) to increase the core and component temperatures to identify the operational limits of the inserts. Thermal imaging was employed to visualize the thermal distribution within the BC and flood cooled (FC) inserts.FindingsThe cooling efficiency of the FC insert was found to be significantly higher than that of the other two inserts, and the homogeneity of the heat distribution of the FC insert was more even than the BC insert. It was possible to manufacture non‐deformed components using the FC insert with zero cooling time (ejection immediately after removal of holding pressure), this was not possible with the BC insert.Research limitations/implicationsProvides a basis for the development of more efficient and thermally homogeneous inserts through the Arcam EBM process.Practical implicationsProvides a technology/process for the manufacture of highly efficient core inserts for injection moulding, offering the industry a competitive advantage through the potential for time and cost savings and higher quality components.Originality/valueThis is the first direct comparison of an Arcam EBM manufactured insert with complex cooling geometries against traditionally cooled inserts, particularly novel is the thermal imaging analysis of the cooling efficiency and distribution.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3