Abstract
Purpose
An electrical power distribution network is expected to deliver uninterrupted power supply to the customers. The disruption in power supply occurs whenever there is a fault in the system. Therefore, fast fault detection and its precise location are necessary to restore the power supply. Several techniques are proposed in the past for fault location in distribution network but they have limitations as their fault location accuracy depends on system conditions. The purpose of this paper is to present a travelling wave-based fault location method, which is fast, accurate and independent of system conditions.
Design/methodology/approach
This paper proposes an effective method for fault detection, classification and location using wavelet analysis of travelling waves for a multilateral distribution network embedded with distributed generation (DG) and electric vehicle (EV) charging load. The wavelet energy entropy (WEE) is used for fault detection and classification purpose, and wavelet modulus maxima (WMM) of aerial mode component is used for faulted lateral identification and exact fault location.
Findings
The proposed method effectively detects and classifies the faults, and accurately determines the exact fault location in a multilateral distribution network. It is also found that the proposed method is robust and its accuracy is not affected by the presence of distributed generation and electric vehicle charging load in the system.
Originality/value
Travelling wave based method for fault location is implemented for a multilateral distribution network containing distributed generation and electric vehicle load. For the first time, a fault location method is tested in the presence of EV charging load in distribution network.
Subject
Strategy and Management,General Energy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献